Back
Featured image of post Basic Math Trigonometric Function - 数学基础 三角函数

Basic Math Trigonometric Function - 数学基础 三角函数

一些国内普通高中的数学笔记,三角函数系列

Trigonometric Function 三角函数

Definition 基础定义

sin(θ)=yr,  cos(θ)=xr,  tan(θ)=yx csc(θ)=ry,  sec(θ)=rx,  cot(θ)=xy \sin (\theta) = \frac{y}{r}, \; \cos (\theta) = \frac{x}{r}, \; \tan (\theta) = \frac{y}{x} \\ ~ \\ \csc (\theta) = \frac{r}{y}, \; \sec (\theta) = \frac{r}{x}, \; \cot (\theta) = \frac{x}{y}

由此可以得到最基本的关系

Reciprocal 倒数

sin(θ)csc(θ)=1 cos(θ)sec(θ)=1 tan(θ)cot(θ)=1 \sin (\theta) \csc (\theta) = 1 \\ ~ \\ \cos (\theta) \sec (\theta) = 1 \\ ~ \\ \tan (\theta) \cot (\theta) = 1

Quotient 商

tan(θ)=sin(θ)cos(θ)=sec(θ)csc(θ) cot(θ)=cos(θ)sin(θ)=csc(θ)sec(θ) \tan (\theta) = \frac{\sin (\theta)}{\cos (\theta)} = \frac{\sec (\theta)}{\csc (\theta)} \\ ~ \\ \cot (\theta) = \frac{\cos (\theta)}{\sin (\theta)} = \frac{\csc (\theta)}{\sec (\theta)}

Graph 图像

y=Asin(BxC)+D or y=Acos(BxC)+DAmplitude=APhase Shift=CBPeriod=2πBπB for tangentVertical Shift=D y = A \sin(Bx - C) + D \text{ or } y = A \cos(Bx - C) + D \\[1em] \begin{aligned} &\text{Amplitude} = |A| \\[0.8em] &\text{Phase Shift} = \frac{C}{B} \\[0.8em] &\text{Period} = \frac{2\pi}{B} \quad \color{blue} \frac{\pi}{B} \text{ for tangent} \\[1.1em] &\text{Vertical Shift} = D \\[0.8em] \end{aligned}

Induction Formula 诱导公式

「奇变偶不变,符号看象限」

诱导公式主要目的是将其他象限角规整到第一象限角(超出 2π2\pi 的部分通过 n2\frac{n}{2} 的方式规整)

对于任意三角函数,都有 (n2π±θ)=θ(n\cdot 2\pi \pm \theta) = \theta(转一圈,所以我们可以只看余数),所以我们化成另外一种形式 (n2π±θ)(\frac{n}{2} \pi \pm \theta )

「奇变偶不变」,指后者的 nn 为偶数是保持原有的三角函数不变sin\sin 还是 sin\sincos\cos 还是 cos\cos; 如果是奇数就让原来的三角函数变为其余角所对应的三角函数

sincoscossin tancotcottan cscsecseccsc \sin \to \cos \\ \cos \to \sin \\ ~ \\ \tan \to \cot \\ \cot \to \tan \\ ~ \\ \csc \to \sec \\ \sec \to \csc

这是因为在 nn (可以看作 nn 就代表的是角度从第 nn 象限开始或结束)为偶数的时候,是以 xx 轴为起始点,而为奇数的时候,是以 yy 轴为起始点,俩者完全对称,并且有余角性质,所以可以通过「奇变偶不变」来总结归纳这样一条规律。

「符号看象限」意思是,(n2π±θ)(\frac{n}{2} \pi \pm \theta ),看作 nn 就代表的是角度从第 nn 象限开始或结束,它所落的象限符号如果是正就不用变,如果是负就加一个负号。涉及到「奇变偶不变」中,「奇变」了之后,就是看变之前所落象限的符号。

以下是所有三角函数象限所对应的符号,其余角所对应三角函数的符号是一致的(只是倒数不影响正负)。

  • sin(θ)=yr\sin (\theta) = \frac{y}{r} 所以 yy 为负时为负
  • cos(θ)=xr\cos (\theta) = \frac{x}{r} 所以 xx 为负时为负
  • tan(θ)=yx\tan (\theta) = \frac{y}{x} 所以 x,yx, y 单一一个为负的时候为负

Trigonometric Identities 三角恒等式

Based on the Pythagorean Theorem 基于勾股定理衍生

首先,显而易见的我们知道

a2+b2=c2 a^2 + b^2 = c^2

由此我们可以得到

sin2(θ)+cos2(θ)=a2c2+b2c2=a2+b2c2=c2c2=1 \sin^{2}(\theta) + \cos^{2}(\theta) = \frac{a^{2}}{c^{2}} + \frac{b^{2}}{c^{2}} = \frac{a^{2}+b^{2}}{c^{2}} = \frac{c^{2}}{c^{2}} = 1

进一步可以得到由此衍生的相关公式,我们将上式除以 cos2(θ)\cos^{2}(\theta)sin2(θ)\sin^{2}(\theta)

sin2(θ)+cos2(θ)=1    sin2(θ)cos2(θ)+cos2(θ)cos2(θ)=1cos2(θ)    tan2(θ)+1=sec2(θ) \sin^{2}(\theta) + \cos^{2}(\theta) = 1 \implies \frac{\sin^{2}(\theta)}{\cos^{2}(\theta)} + \frac{\cos^{2}(\theta)}{\cos^{2}(\theta)} = \frac{1}{\cos^{2}(\theta)} \implies \tan^{2}(\theta) + 1 = \sec^{2}(\theta)

sin2(θ)+cos2(θ)=1    sin2(θ)sin2(θ)+cos2(θ)sin2(θ)=1sin2(θ)    1+cot2(θ)=csc2(θ) \sin^{2}(\theta) + \cos^{2}(\theta) = 1 \implies \frac{\sin^{2}(\theta)}{\sin^{2}(\theta)} + \frac{\cos^{2}(\theta)}{\sin^{2}(\theta)} = \frac{1}{\sin^{2}(\theta)} \implies 1 + \cot^{2}(\theta) = \csc^{2}(\theta)

也可以借助下图记忆,阴影三角形的上面两个相加等于下面的结果

sin2(θ)+cos2(θ)=1 tan2(θ)+1=sec2(θ) 1+cot2(θ)=csc2(θ) \sin^{2(\theta)} + \cos^{2}(\theta) = 1 \\ ~ \\ \tan^{2}(\theta) + 1 = \sec^{2}(\theta) \\ ~ \\ 1 + \cot^{2}(\theta) = \csc^{2}(\theta)

Plus and Minus 和差

sin(α±β)=sin(α)cos(β)±cos(α)sin(β)cos(α±β)=cos(α)cos(β)±sin(α)sin(β)tan(α±β)=tan(α)±tan(β)1tan(α)tan(β) \sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta) \\[0.6em] \cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \pm \sin(\alpha)\sin(\beta) \\[0.8em] \tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha)\tan(\beta)}

Double Angle 倍角

通过欧拉公式

eiθ=cos(θ)+isin(θ)ei2θ=cos(2θ)+isin(2θ)eiθeiθ=(cos(θ)+isin(θ))(cos(θ)+isin(θ))cos(2θ)+isin(2θ)=cos2(θ)sin2(θ)+2cos(θ)sin(θ)i \begin{aligned} e^{i \theta} &= \cos (\theta) + i \sin (\theta) \\[0.3em] e^{i 2\theta} &= \cos (2\theta) + i \sin (2\theta) \\[0.3em] e^{i \theta}\cdot e^{i \theta} &= (\cos (\theta) + i \sin (\theta))(\cos (\theta) + i \sin (\theta)) \\[0.3em] \cos (2\theta) + i \sin (2\theta) &= \cos^{2} (\theta) - \sin^{2} (\theta) + 2 \cos (\theta) \sin (\theta) i \end{aligned}

\downarrow

cos(2θ)=cos2(θ)sin2(θ)sin(2θ)=2cos(θ)sin(θ) \cos (2\theta) = \cos^{2} (\theta) - \sin^{2} (\theta) \\ \sin (2\theta) = 2 \cos (\theta) \sin (\theta)

\downarrow

(sin(θ)+cos(θ))2=sin2(θ)+cos2(θ)+2sin(θ)cos(θ)=1+sin(2θ) (\sin(\theta) + \cos(\theta))^{2} = \sin^{2} (\theta) + \cos^{2} (\theta) + 2\sin(\theta) \cos (\theta) = 1 + \sin (2\theta)

  • 例题

(a)\text{(a)}

02πsin(θ)cos(θ) dθ \int_{0}^{2 \pi} \sin(\theta) \cos(\theta) ~\mathrm{d}\theta

思路 (i)\text{(i)} 三角恒等式

02πsin(θ)cos(θ) dθ=1202πsin(2θ) dθ=1402πsin(u) duapply u-sub dθ=12du=14cos(2x)02π=14+14=0 \begin{aligned} \int_{0}^{2 \pi} \sin(\theta) \cos(\theta) ~\mathrm{d}\theta &= \frac{1}{2} \int_{0}^{2 \pi} \sin(2\theta) ~\mathrm{d}\theta \\[0.8em] &= \frac{1}{4} \int_{0}^{2\pi} \sin(u) ~\mathrm{d}u \quad \color{blue} \text{apply u-sub } \mathrm{d}\theta = \frac{1}{2} \mathrm{d}u \\[0.8em] &= \frac{1}{4} \cdot -\cos(2x)\bigg|_{0}^{2\pi} = - \frac{1}{4} + \frac{1}{4} = 0 \end{aligned}

思路 (ii)\text{(ii)} 分部积分

选取如下 u,vu, v

uvNo-dsin(θ)sin(θ)Dcos(θ)cos(θ) \def\arraystretch{1.5} \begin{array} { c | c | c} & u & v \\ \hline \text{No-d} & \sin(\theta) & \sin(\theta) \\ \hline \text{D} & \cos(\theta) & \cos(\theta) \end{array}

uv=udv+vduuv02π=02πsin(θ)cos(θ) dθ+02πsin(θ)cos(θ) dθsin(θ)cos(θ)202π=02πsin(θ)cos(θ) dθ=0 \begin{aligned} uv &= \int u\cdot \mathrm{d}v + \int v\cdot \mathrm{d}u \\[0.8em] uv \bigg|_{0}^{2\pi} &= \int_{0}^{2 \pi} \sin(\theta) \cos(\theta) ~\mathrm{d}\theta + \int_{0}^{2 \pi} \sin(\theta) \cos(\theta) ~\mathrm{d}\theta \\[0.8em] \frac{\sin(\theta)\cos(\theta)}{2} \bigg|_{0}^{2 \pi} &= \int_{0}^{2 \pi} \sin(\theta) \cos(\theta) ~\mathrm{d}\theta = 0 \end{aligned}

tan(2θ)=2tan(θ)1tan2(θ) \tan(2 \theta) = \frac{2 \tan(\theta)}{1 - \tan^{2}(\theta)}

Descending Power 降幂

首先通过勾股定理衍生

sin2(θ)+cos2(θ)=1    {sin2(θ)=1cos2(θ)cos2(θ)=1sin2(θ) \sin^{2} (\theta)+ \cos^{2} (\theta) = 1 \implies \begin{cases} \sin^{2} (\theta) = 1 - \cos^{2} (\theta) \\ \cos^{2} (\theta) = 1 - \sin^{2} (\theta) \end{cases}

我们知道 cos\cos 的倍角公式

cos(2θ)=cos2(θ)sin2(θ) \cos (2\theta) = \cos^{2} (\theta) - \sin^{2} (\theta) \\

sin2(θ)=1cos2(θ)\sin^{2} (\theta) = 1 - \cos^{2} (\theta)cos2(θ)=1sin2(θ)\cos^{2} (\theta) = 1 - \sin^{2} (\theta) 带入

{cos(2θ)=(1sin2(θ))sin2(θ)cos(2θ)=cos2(θ)(1cos2(θ)) \begin{cases} \cos (2\theta) = (1 - \sin^{2} (\theta)) - \sin^{2} (\theta) \\ \cos (2\theta) = \cos^{2} (\theta)- (1 - \cos^{2} (\theta)) \end{cases}

\downarrow

{sin2(θ)=12(1cos2θ)cos2(θ)=12(1+cos2θ) \begin{cases} \sin^{2} (\theta) = \frac{1}{2}(1 - \cos 2\theta) \\ \cos^{2} (\theta) = \frac{1}{2}(1 + \cos 2\theta) \end{cases}

(a)\text{(a)}

02πsin2(θ) dθ \int_{0}^{2\pi} \sin^{2}(\theta) ~\mathrm{d}\theta

思路 (i)\text{(i)} 三角恒等式

02πsin2(θ) dθ=1202π1cos(2θ) dθ=1202π1 dθ1202πcos(u) duapply u-sub dθ=12du=12(θ02πsin(θ)02π)=π \begin{aligned} \int_{0}^{2\pi} \sin^{2}(\theta) ~\mathrm{d}\theta &= \frac{1}{2} \int_{0}^{2\pi} 1 - \cos (2 \theta) ~\mathrm{d}\theta \\[0.8em] &= \frac{1}{2} \int_{0}^{2 \pi} 1 ~\mathrm{d}\theta - \frac{1}{2}\int_{0}^{2 \pi} \cos (u) ~\mathrm{d}u \quad \color{blue} \text{apply u-sub } \mathrm{d}\theta = \frac{1}{2} \mathrm{d}u \\[0.8em] &= \frac{1}{2} (\theta \bigg|_{0}^{2\pi} - \sin (\theta) \bigg|_{0}^{2\pi} ) \\[0.8em] &= \pi \end{aligned}

思路 (ii)\text{(ii)} 分部积分

选取如下 u,vu, v

uvNo-dsin(θ)cos(θ)Dcos(θ)sin(θ) \def\arraystretch{1.5} \begin{array} { c | c | c} & u & v \\ \hline \text{No-d} & \sin(\theta) & -\cos(\theta) \\ \hline \text{D} & \cos(\theta) & \sin(\theta) \end{array}

uv=udv+vduuv02π=02πsin2(θ) dθ02πcos2(θ) dθuv02π=02πsin2(θ) dθ02π1sin2(θ) dθuv+02π1 dθ=202πsin2(θ) dθsin(θ)cos(θ)+θ02π202π=02πsin2(θ) dθ=π \begin{aligned} uv &= \int u\cdot \mathrm{d}v + \int v\cdot \mathrm{d}u \\[0.8em] uv \bigg|_{0}^{2\pi} &= \int_{0}^{2 \pi} \sin^{2}(\theta) ~\mathrm{d}\theta - \int_{0}^{2 \pi} \cos^{2}(\theta) ~\mathrm{d}\theta \\[0.8em] uv \bigg|_{0}^{2\pi} &= \int_{0}^{2 \pi} \sin^{2}(\theta) ~\mathrm{d}\theta - \int_{0}^{2 \pi} 1 - \sin^{2}(\theta) ~\mathrm{d}\theta\\[0.8em] uv + \int_{0}^{2 \pi} 1 ~\mathrm{d}\theta &= 2 \int_{0}^{2 \pi} \sin^{2}(\theta) ~\mathrm{d}\theta\\[0.8em] \frac{-\sin(\theta)\cos(\theta) + \theta \bigg|_{0}^{2 \pi} }{2} \bigg|_{0}^{2 \pi} &= \int_{0}^{2 \pi} \sin^{2}(\theta) ~\mathrm{d}\theta = \pi \end{aligned}

tan2(θ)=1cos2(θ)1+cos2(θ) \tan^{2}(\theta) = \frac{1-\cos^{2}(\theta)}{1 + \cos^{2}(\theta)}

Auxiliary Angle 辅助角公式

对于任意 sin(θ),cos(θ),tan(θ)\sin (\theta), \cos (\theta), \tan (\theta) 都能写成非三角函数的勾股定理形式

cos(φ)=aa2+b2,  sin(φ)=ba2+b2,  tan(φ)=sin(φ)cos(φ)=ba \cos (\varphi) = \frac{a}{\sqrt{a^{2} + b^{2}}}, \; \sin (\varphi) = \frac{b}{\sqrt{a^{2} + b^{2}}}, \; \tan (\varphi) = \frac{\sin (\varphi)}{\cos (\varphi)} = \frac{b}{a}

所以我们可以对 y=asin(x)+bcos(x)y = a \sin(x) + b \cos(x) 整理

Note: cos(θπ2)=sin(θ)\cos(\theta - \frac{\pi}{2}) = \sin(\theta)

y=asinx+bcosx=a2+b2(sin(x)aa2+b2+cos(x)ba2+b2)=a2+b2(sin(x)cos(φ)+cos(x)sin(φ))=a2+b2sin(x+φ)=a2+b2cos(x+φπ2) \begin{aligned} y &= a \sin x + b \cos x \\[0.3em] &= \sqrt{a^{2} + b^{2}} \left( \sin (x) \cdot \frac{a}{\sqrt{a^{2} + b^{2}}} + \cos (x) \cdot \frac{b}{\sqrt{a^{2} + b^{2}}} \right) \\[1em] &= \sqrt{a^{2} + b^{2}} \left( \sin (x) \cos (\varphi) + \cos (x) \sin (\varphi) \right) \\[0.8em] &= \sqrt{a^{2} + b^{2}} \sin (x + \varphi) \\[0.8em] &= \sqrt{a^{2} + b^{2}} \cos (x + \varphi - \frac{\pi}{2}) \end{aligned}

  • 例题

(1)\text{(1)}

y=3sin(2x)+cos(2x)=3sin(2x)+1cos(2x)=(3)2+12sin(2x+φ)=2sin(2x+φ) \begin{aligned} y &= \sqrt{3} \sin (2x) + \cos (2x) \\[0.6em] &= \sqrt{3} \sin (2x) + 1\cdot \cos (2x) \\[0.8em] &= \sqrt{(\sqrt{3})^{2} + 1^{2}} \cdot \sin(2x + \varphi) \\[1em] &= 2 \sin(2x + \varphi) \end{aligned}

所以我们可以确定 a=3,  b=1a = \sqrt{3}, \; b = 1

tan(φ)=ba=13=33=tan(π6)φ=π6 \tan (\varphi) = \frac{b}{a} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} = \tan\left(\frac{\pi}{6}\right) \\[0.6em] \varphi = \frac{\pi}{6}

Half Angle 半角

sin(θ2)=±1cos(θ)2cos(θ2)=±1+cos(θ)2tan(θ2)=±1cos(θ)1+cos(θ) \sin \left( \frac{\theta}{2} \right) = \pm \sqrt{\frac{1-\cos(\theta)}{2}} \\[1em] \cos \left( \frac{\theta}{2} \right) = \pm \sqrt{\frac{1+\cos(\theta)}{2}} \\[1em] \tan \left( \frac{\theta}{2} \right) = \pm \sqrt{\frac{1-\cos(\theta)}{1 + \cos(\theta)}}

Note: tan(π2),  asin(2kπ)\tan\left( \frac{\pi}{2} \right), \; \frac{a}{\sin(2k \pi)} don’t exist.

  • Identity (θπ+2kπ\theta \neq \pi + 2k \pi)

tan(θ2)=sin(θ2)cos(θ2)=2sin(θ2)cos(θ2)2cos2(θ2)=sin(θ)1+cos(θ) \tan \left( \frac{\theta}{2} \right) = \frac{\sin \left( \frac{\theta}{2} \right)}{\cos \left( \frac{\theta}{2} \right)} = \frac{2 \sin\left( \frac{\theta}{2} \right) \cos\left( \frac{\theta}{2} \right) }{2 \cos^{2}(\frac{\theta}{2})} = \frac{\sin(\theta)}{1 + \cos(\theta)}

  • Nonidentity (Left: θπ+2kπ\theta \neq \pi + 2k \pi, Right: θ2kπ\theta \neq 2k \pi)

tan(θ2)=sin(θ2)cos(θ2)=2sin2(θ2)2sin(θ2)cos(θ2)=1cos(θ)sin(θ) \tan \left( \frac{\theta}{2} \right) = \frac{\sin \left( \frac{\theta}{2} \right)}{\cos \left( \frac{\theta}{2} \right)} = \frac{2 \sin^{2}\left( \frac{\theta}{2} \right)}{2 \sin\left(\frac{\theta}{2}\right)\cos\left( \frac{\theta}{2} \right) } = \frac{1 - \cos(\theta)}{\sin (\theta)}

Sum to Product 和差化积

sin(α)±sin(β)=2sin(α±β2)cos(αβ2)cos(α)+cos(α)=2cos(α+β2)cos(αβ2)cos(α)cos(α)=2sin(α+β2)sin(αβ2) \sin(\alpha) \pm \sin(\beta) = 2 \sin \left( \frac{\alpha \pm \beta}{2} \right) \cos \left( \frac{\alpha \mp \beta}{2} \right) \\[1em] \cos(\alpha) + \cos(\alpha) = 2 \cos \left( \frac{\alpha + \beta}{2} \right) \cos\left( \frac{\alpha - \beta}{2} \right) \\[1em] \cos(\alpha) - \cos(\alpha) = - 2 \sin \left( \frac{\alpha + \beta}{2} \right) \sin\left( \frac{\alpha - \beta}{2} \right)

Product to Sum 积化和差

sin(α)cos(β)=12[sin(α+β)+sin(αβ)]cos(α)sin(β)=12[sin(α+β)sin(αβ)]cos(α)cos(β)=12[cos(α+β)+cos(αβ)]sin(α)sin(β)=12[cos(α+β)cos(αβ)] \sin(\alpha) \cos(\beta) = \frac{1}{2} \left[ \sin(\alpha + \beta) + \sin(\alpha - \beta) \right] \\[0.8em] \cos(\alpha) \sin(\beta) = \frac{1}{2} \left[ \sin(\alpha + \beta) - \sin(\alpha - \beta) \right] \\[0.8em] \cos(\alpha) \cos(\beta) = \frac{1}{2} \left[ \cos(\alpha + \beta) + \cos(\alpha - \beta) \right] \\[0.8em] \sin(\alpha) \sin(\beta) = -\frac{1}{2} \left[ \cos(\alpha + \beta) - \cos(\alpha - \beta) \right]

Trigonometric Equation 三角方程

  • 对于 sin(x)=a\sin(x) = a,我们可以进行如下讨论

(1) a=1\text{(1) } a = 1x{xx=2kπ+π2,kZ}x \in \left\{x | x = 2k \pi + \frac{\pi}{2}, k \in \mathbb{Z}\right\}

(2) a=1\text{(2) } a = -1x{xx=2kππ2,kZ}x \in \left\{x | x = 2k \pi - \frac{\pi}{2}, k \in \mathbb{Z}\right\}

(3) a<1\text{(3) } |a| < 1x{xx=kπ+(1)karcsin(a),kZ}x \in \left\{x | x = k \pi + (-1)^{k} \arcsin(a), k \in \mathbb{Z}\right\}

(4) a>1\text{(4) } |a| > 1xx \in \varnothing

  • 对于 cos(x)=a\cos(x) = a,我们可以进行如下讨论

(1) a=1\text{(1) } a = 1x{xx=2kπ,kZ}x \in \left\{x | x = 2k \pi, k \in \mathbb{Z}\right\}

(2) a=1\text{(2) } a = -1x{xx=2kπ+π,kZ}x \in \left\{x | x = 2k \pi + \pi, k \in \mathbb{Z}\right\}

(3) a<1\text{(3) } |a| < 1x{xx=2kπ±arccos(a),kZ}x \in \left\{x | x = 2k \pi \pm \arccos(a), k \in \mathbb{Z}\right\}

(4) a>1\text{(4) } |a| > 1xx \in \varnothing

  • 对于 tan(x)=a\tan(x) = ax{xx=kπ+arctan(a),kZ}x \in \left\{x | x = k \pi + \arctan(a), k \in \mathbb{Z}\right\}

  • 反三角

arcsin(x)=arcsin(x)arccos(x)=πarccos(x)arctan(x)=arctan(x) \arcsin(-x) = -\arcsin(x) \\ \arccos(-x) = \pi - \arccos(x) \\ \arctan(-x) = -\arctan(x)

余/正弦定理

若存在 ABC\triangle ABC,其外接圆半径为 RR

asin(A)=bsin(B)=csin(C)=2Ra2=b2+c22bccos(α)b2=a2+c22accos(β)c2=a2+b22abcos(γ) \frac{a}{\sin(\angle A)} = \frac{b}{\sin(\angle B)} = \frac{c}{\sin (\angle C)} = 2R \\[1em] a^{2} = b^{2} + c^{2} - 2bc\cdot \cos(\alpha) \\[1em] b^{2} = a^{2} + c^{2} - 2ac\cdot \cos(\beta) \\[1em] c^{2} = a^{2} + b^{2} - 2ab\cdot \cos(\gamma)

Differentiated 求导

(sin(θ))=cos(θ)(cos(θ))=sin(θ)(tan(θ))=sec2(θ)(cot(θ))=csc2(θ)(sec(θ))=tan(θ)sec(θ)(csc(θ))=cot(θ)csc(θ)(arcsin(θ))=11x2(arctan(θ))=11+x2 \begin{aligned} (\sin(\theta))' &= \cos(\theta) \\ (\cos(\theta))' &= -\sin(\theta) \\ (\tan(\theta))' &= \sec^{2}(\theta) \\ (\cot(\theta))' &= -\csc^{2}(\theta) \\ (\sec(\theta))' &= \tan(\theta)\sec(\theta) \\ (\csc(\theta))' &= - \cot(\theta)\csc(\theta) \\ (\arcsin(\theta))' &= \frac{1}{\sqrt{1 - x^{2}}} \\ (\arctan(\theta))' &= \frac{1}{1+x^{2}} \end{aligned}

Integral 积分

sin(θ) dθ=cos(θ)+Ccos(θ) dθ=sin(θ)+Ctan(θ) dθ=lncos(θ)+Ccot(θ) dθ=lnsin(θ)+Csec(θ) dθ=lntan(θ)+sec(θ)+Ccsc(θ) dθ=lncsc(θ)cot(θ)+C \begin{aligned} \int \sin(\theta) ~\mathrm{d}\theta &= - \cos(\theta) + C \\[0.8em] \int \cos(\theta) ~\mathrm{d}\theta &= \sin(\theta) + C \\[0.8em] \int \tan(\theta) ~\mathrm{d}\theta &= - \ln| \cos(\theta) | + C \\[0.8em] \int \cot(\theta) ~\mathrm{d}\theta &= \ln| \sin(\theta) | + C \\[0.8em] \int \sec(\theta) ~\mathrm{d}\theta &= \ln| \tan(\theta) + \sec(\theta) | + C \\[0.8em] \int \csc(\theta) ~\mathrm{d}\theta &= \ln| \csc(\theta) - \cot(\theta) | + C \\ \end{aligned}

To be continued…